Übungen zur Vorlesung

Analysis I

WiSe 2021/2022

Bernold Fiedler, Isabelle Schneider http://dynamics.mi.fu-berlin.de/lectures/

Abgabe: Mittwoch, 08.12.2021, 17 Uhr

Aufgabe 21: Sei $(n_k)_{k\in\mathbb{N}}$ eine Folge natürlicher Zahlen. Beweise oder widerlege:

- (i) $n_k \to \infty$ gilt genau dann, wenn in der Folge n_k jede natürliche Zahl m höchstens endlich oft vorkommt.
- (ii) $n_k \to \infty$ gilt genau dann, wenn keine Teilfolge n_{k_j} der n_k , mit $k_j \ge j$, beschränkt ist.
- (iii) $n_k \to \infty$ gilt genau dann, wenn $n_{k_j} \to \infty$ für jede Teilfolge n_{k_j} der n_k gilt, mit $k_j \ge j$.
- (iv) ξ ist Häufungswert einer Folge x_n (gemäß unserer Definition II.1.3.1 in der Vorlesung) genau dann, wenn es eine gegen ξ konvergente Teilfolge x_{n_k} gibt, für die $n_k \to \infty$ gilt (aber nicht unbedingt $n_k \ge k$).

Aufgabe 22: [Intervallschachtelung] Gegeben sei eine absteigende Folge abgeschlossener reeller Intervalle $I_n = [a_n, b_n]$ mit $a_n < b_n$, d.h.

$$I_1 \supset I_2 \supset \dots$$

(i) Zeige, dass

$$\bigcap_{n\in\mathbb{N}}I_n \neq \emptyset.$$

- (ii) Für die Längen $|I_n| := b_n a_n$ gelte $\lim_{n \to \infty} |I_n| = 0$. Zeige, dass obiger Durchschnitt aus genau einer Zahl besteht.
- (iii) Gelten (i), (ii) auch für die offenen Intervalle $\tilde{I}_n := (a_n, b_n)$?

Aufgabe 23: Sei $(x_n)_{n\in\mathbb{N}}$ eine Folge reeller Zahlen und

$$\mu_n := \frac{1}{n} \sum_{k=1}^n x_k$$

die Folge der arithmetischen Mittelwerte.

- (i) Sei $(x_n)_{n\in\mathbb{N}}$ konvergent, $x=\lim_{n\to\infty}x_n$. Zeige, dass dann auch $(\mu_n)_{n\in\mathbb{N}}$ konvergiert. Was ist der Grenzwert?
- (ii) Finde eine divergente Folge $(x_n)_{n\in\mathbb{N}}$, deren Mittelwerte μ_n trotzdem konvergieren.

Aufgabe 24: Sei die unbeschränkte Folge $n \mapsto x_n$ eine Abzählung der rationalen Zahlen. Beweise oder widerlege: Jede reelle Zahl ist Häufungswert der Folge $(x_n)_{n \in \mathbb{N}}$.

Freiwillige Zusatzaufgabe:

Beweise oder widerlege: Jede Folge reeller Zahlen enthält eine monotone Teilfolge.